Integer circulant determinants of order 16
نویسندگان
چکیده
We solve Olga Taussky–Todd’s circulant problem in the case of order 16.
منابع مشابه
A Single Formula for Integer Powers of Certain Real Circulant Matrix of Odd and Even Order
In this paper, we derive a single formula for the entries of the rth (r ∈ N) power of a certain real circulant matrix of odd and even order, in terms of the Chebyshev polynomials of the first and second kind. In addition, we give two Maple 13 procedures along with some numerical examples in order to verify our calculation.
متن کاملThe Classification of Circulant Weighing Matrices of Weight 16 and Odd Order
In this paper we completely classify the circulant weighing matrices of weight 16 and odd order. It turns out that the order must be an odd multiple of either 21 or 31. Up to equivalence, there are two distinct matrices in CW (31, 16), one matrix in CW (21, 16) and another one in CW (63, 16) (not obtainable by Kronecker product from CW (21, 16)). The classification uses a multiplier existence t...
متن کاملInteger-order Versus Fractional-order Adaptive Fuzzy Control of Electrically Driven Robots with Elastic Joints
Real-time robust adaptive fuzzy fractional-order control of electrically driven flexible-joint robots has been addressed in this paper. Two important practical situations have been considered: the fact that robot actuators have limited voltage, and the fact that current signals are contaminated with noise. Through of a novel voltage-based fractional order control for an integer-order dynamical ...
متن کاملComputation of Maximal Determinants of Binary Circulant Matrices
We describe algorithms for computing maximal determinants of binary circulant matrices of small orders. Here “binary matrix” means a matrix whose elements are drawn from {0, 1} or {−1, 1}. We describe efficient parallel algorithms for the search, using Duval’s algorithm for generation of Lyndon words and the well-known representation of the determinant of a circulant in terms of roots of unity....
متن کاملRecognizing Circulant Graphs of Prime Order in Polynomial Time Recognizing Circulant Graphs of Prime Order in Polynomial Time
1 Abstract In this paper we present a time-polynomial recognition algorithm for circulant graphs of prime order. A circulant graph G of order n is a Cayley graph over the cyclic group Z n : Equivalently, G is circulant ii its vertices can be ordered such that the corresponding adjacency matrix becomes a circulant matrix. To each circulant graph we may associate a coherent connguration A and, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ramanujan Journal
سال: 2022
ISSN: ['1572-9303', '1382-4090']
DOI: https://doi.org/10.1007/s11139-022-00599-9